public class Surrogate extends Object
| Modifier and Type | Field and Description |
|---|---|
private AbstractOperator |
operator |
private int |
progressBarMax |
private int |
progressBarMin |
static int |
SURROGATE_AAFT |
static int |
SURROGATE_GAUSSIAN |
static int |
SURROGATE_MULTIVARIATE |
static int |
SURROGATE_PSEUDOPERIODIC |
static int |
SURROGATE_RANDOMPHASE |
static int |
SURROGATE_SHUFFLE |
| Constructor and Description |
|---|
Surrogate()
This is the standard constructor
|
Surrogate(AbstractOperator operator)
This is the standard constructor with the possibility to import calling class
This is useful for progress bar and canceling functionality
|
| Modifier and Type | Method and Description |
|---|---|
Double |
calcMean(double[] doubleArray)
This method calculates the mean of a data series
|
Double |
calcMean(Vector<Double> data1D)
This method calculates the mean of a data series
|
private double |
calcStandardDeviation(double[] doubleArray)
This method calculates the standard deviation of a data series
|
private double |
calcStandardDeviation(Vector<Double> data1D)
This method calculates the standard deviation of a data series
|
double[] |
calcSurrogateAAFT(double[] signal)
This method calculates a surrogate data double array using the AAFT (amplitude adjusted FT) method
A Gaussian signal y is constructed
y is ranked according to the original signal
then y is FFT converted, phase randomized and inverse FFT back converted yielding y'
the original signal is ranked according to y'
|
double[] |
calcSurrogateGaussian(double[] signal)
This method calculates a surrogate data double array using the Gaussian method
A Gaussian signal with identical mean and standard deviation as the original signal is constructed
|
Vector<Double> |
calcSurrogateGaussian(Vector<Double> data1D)
This method calculates a surrogate data vector using the Gaussian method
A Gaussian signal with identical mean and standard deviation as the original signal is constructed
|
double[] |
calcSurrogateMultivariate(double[] signal)
This method calculates a surrogate data double array using the multivariate method
Not implemented yet
|
double[] |
calcSurrogatePseudoPeriodic(double[] signal)
This method calculates a surrogate data double array using the pseudo periodic method
Not implented yet
|
double[] |
calcSurrogateRandomPhase(double[] signal)
This method calculates a surrogate data double array using the phase randomized method
The signal is FFT converted, phase randomized and inverse FFT back converted
|
Vector<Vector<Double>> |
calcSurrogateSeries(Vector<Double> data1D,
int method,
int times)
This method calculates new surrogate series
|
double[] |
calcSurrogateShuffle(double[] signal)
This method calculates a surrogate data double array using the shuffle method
The signal is randomly shuffled
|
private double |
calcVariance(double[] doubleArray)
This method calculates the variance of a data series
|
private double |
calcVariance(Vector<Double> data1D)
This method calculates the variance of a data series
|
private Vector<Double> |
convertDoubleArrayToVector(double[] doubleArray)
This method constructs a Vector
|
private double[] |
convertVectorToDoubleArray(Vector<Double> data1D)
This method constructs a double[] array from a Vector
|
int |
getProgressBarMax() |
int |
getProgressBarMin() |
void |
setProgressBarMax(int progressBarMax) |
void |
setProgressBarMin(int progressBarMin) |
public static final int SURROGATE_SHUFFLE
public static final int SURROGATE_GAUSSIAN
public static final int SURROGATE_RANDOMPHASE
public static final int SURROGATE_AAFT
public static final int SURROGATE_PSEUDOPERIODIC
public static final int SURROGATE_MULTIVARIATE
private AbstractOperator operator
private int progressBarMin
private int progressBarMax
public Surrogate(AbstractOperator operator)
operator - public Surrogate()
public int getProgressBarMin()
public void setProgressBarMin(int progressBarMin)
public int getProgressBarMax()
public void setProgressBarMax(int progressBarMax)
private double[] convertVectorToDoubleArray(Vector<Double> data1D)
data1D - private Vector<Double> convertDoubleArrayToVector(double[] doubleArray)
doubleArray - public Double calcMean(Vector<Double> data1D)
data1D - public Double calcMean(double[] doubleArray)
doubleArray - private double calcVariance(Vector<Double> data1D)
data1D - private double calcVariance(double[] doubleArray)
doubleArray - private double calcStandardDeviation(Vector<Double> data1D)
data1D - private double calcStandardDeviation(double[] doubleArray)
doubleArray - public double[] calcSurrogateShuffle(double[] signal)
signal - public Vector<Double> calcSurrogateGaussian(Vector<Double> data1D)
data1D - public double[] calcSurrogateGaussian(double[] signal)
signal - public double[] calcSurrogateRandomPhase(double[] signal)
signal - public double[] calcSurrogateAAFT(double[] signal)
signal - public double[] calcSurrogatePseudoPeriodic(double[] signal)
signal - public double[] calcSurrogateMultivariate(double[] signal)
signal - public Vector<Vector<Double>> calcSurrogateSeries(Vector<Double> data1D, int method, int times)
data1D - 1D data vectormethod - method of surrogate data generationtimes - number of new seriesCopyright © 2009–2017 Helmut Ahammer, Philipp Kainz. All rights reserved.